ZAO NEG Technology in Fusion Energy Applications

Vacuum Technology Division
Content

- Vacuum Systems Challenges in Fusion Energy
- ZAO NEG pumps characteristics in Fusion Energy
- Applications
- NEG basics
- Conclusions
- New vacuum trends
Vacuum Systems Challenges in Fusion Energy
- ZAO NEG pumps characteristics in Fusion Energy
- Applications
- NEG basics
- Conclusions
- New vacuum trends
Thermonuclear Fusion: a new promising and powerful energy source

Fusion Energy is based on the thermonuclear reaction of hydrogen isotopes fuels in a plasma.

In stars, the huge gravity allows confining atoms and to produce energy by fusion at about 15 million °C.

The thermonuclear reactors developments started in 50’s-70’s to reproduce the energy production mechanisms inside stars.

The most promising fusion reaction on earth involves D and T to produce He and highly energetic neutrons.

To get the confinement and plasma process of H₂ isotopes in thermonuclear reactors, 3 main aspects must be fulfilled:

- Make the reaction in vacuum (background pressure at least 1e-5 Pa)
- Utilize refilling sources of H₂ isotopes and pump exhaust to keep stable plasma
- Use of powerful magnets to confine the plasma.
Vacuum Systems Challenges in Fusion Energy

- The vacuum characteristics of fusion energy process in stars vs thermonuclear reactors are:
 - In thermonuclear reactors vacuum conditions must be generated from scratch
 - H₂ isotopes are confined by gravity inside stars, in thermonuclear reactors H₂ isotopes repulse each other and escape from the plasma
 - Escaped isotopes can destabilize plasma process and therefore production of energy
 - The pressure has to be kept constant against a certain re-fuelling rate of H₂ isotopes

- In the vacuum systems of thermonuclear reactors, 2 different aspects must be addressed:
 - Base pressure in high vacuum level, e.g. at least 1e-6 Pa
 - Large pumping speed for H₂ isotopes to either keep stable fluxes or absorb escaped H₂ isotopes

- The thermonuclear reactors consist of:
 - main vessel where plasma process occurs and the produced energy is absorbed & distributed
 - several subsystems for plasma heating and confinement, and keep adequate vacuum conditions

- The background gas are mainly H₂, water and CO/CO₂

- Hydrocarbons and air are excluded from the application
Vacuum Systems Challenges in Fusion Energy: subsystems

Diagnostics
- Diagnostics are used to inspect the plasma process
- H\textsubscript{2} can back stream in diagnostic ducts and must be pumped

Storage and release of hydrogen isotopes
- H\textsubscript{2} isotopes are produced and mixed to 4He
- H\textsubscript{2} isotopes must be selectively pumped and released

Divertor
- The divertor collects the waste of materials used in the plasma process such as H\textsubscript{2} isotopes

NBI
- Neutral Beam of H\textsubscript{2} and D\textsubscript{2} is injected inside the thermonuclear reactor to «heat» the plasma process
- During the experiment, gas is scattered and must be pumped

ECRH/ICRH
- The ECRH/ICRH works in the range of 1e-6 Pa
- Between reactor and ECRH diamond windows can be used to prevent back streaming of H\textsubscript{2} isotopes
- Sometimes, windows are not used and high flux of H\textsubscript{2} can back stream
Vacuum Systems Challenges in Fusion Energy: vacuum requirements

<table>
<thead>
<tr>
<th></th>
<th>NBI</th>
<th>Divertor</th>
<th>ECRH/ICRH</th>
<th>Diagnostic</th>
<th>H\textsubscript{2} storage and release</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum background (Pa) - main gas</td>
<td>1e-6 \cdot H\textsubscript{2}</td>
<td>1e-6 \cdot H\textsubscript{2}</td>
<td>1e-6 \cdot H\textsubscript{2}, H\textsubscript{2}O</td>
<td>1e-7 \cdot H\textsubscript{2}, H\textsubscript{2}O</td>
<td>1e-7 \cdot H\textsubscript{2}, H\textsubscript{2}O</td>
</tr>
<tr>
<td>H\textsubscript{2} isotopes level during operation (Pa)</td>
<td>1e-2</td>
<td>1e-3+1</td>
<td>1e-5</td>
<td>1e-2</td>
<td>1e-2***</td>
</tr>
<tr>
<td>Required H\textsubscript{2} isotopes pumping speed (l/s)</td>
<td>10.000\div6M*</td>
<td>10.000\div1M*</td>
<td>Distributed pumping</td>
<td>1.000</td>
<td>NAN****</td>
</tr>
<tr>
<td>Required H\textsubscript{2} isotopes capacity (Pa\cdot l)**</td>
<td>10M\div1.000M</td>
<td>1M\div10.000M</td>
<td>2k</td>
<td>10k</td>
<td>NAN****</td>
</tr>
</tbody>
</table>

* The pumping speed depends on NBI and Divertor volumes and Pumps Conductance

**The required capacity is calculated for 5 days of operation

***The pressure indicates the H\textsubscript{2} isotopes value at ppb level in He\textsubscript{4} gas stream

****In the storage and release of H\textsubscript{2} isotopes, NEG “bed” must be considered which can enhance the probability to capture H\textsubscript{2} isotopes in a large gas stream flux

Takeaways

- In thermonuclear reactors subsystems, the required pumping speed and capacity of H\textsubscript{2} isotopes are very significant
- The required pumping speed and capacity must be considered as distributed inside the vacuum systems
- Given the large amount involved, the pumping system must be able to store and release H\textsubscript{2} isotopes by controlled process
Vacuum Systems Challenges in Fusion Energy: available pumping technologies

<table>
<thead>
<tr>
<th></th>
<th>Cryo pump</th>
<th>Ion pump 500</th>
<th>TMP 300</th>
<th>CapaciTorr Z400</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dim. (cm)</td>
<td>20 Ø x 53</td>
<td>52 x 45 x 30</td>
<td>25 x 21</td>
<td>13 x 3.5</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>12</td>
<td>120</td>
<td>20</td>
<td>0.2 kg</td>
</tr>
<tr>
<td>Pumping speed for H₂ (l/s)</td>
<td>300</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Power consumption (W)</td>
<td>2200</td>
<td>0.035-0.35</td>
<td>35</td>
<td>0</td>
</tr>
</tbody>
</table>

- **Pumping technologies** must be **compared** in terms of **performances vs** (dimension, weight, pumping speed, Power consumption)
Vacuum Systems Challenges in Fusion Energy: available pumping technologies

- **NEG pumps** are compliant with main **thermonuclear reactors requirements** in fusion energy applications.

<table>
<thead>
<tr>
<th>Thermonuclear reactor requirements</th>
<th>Ion pump</th>
<th>TMP</th>
<th>Cryo pump</th>
<th>NEG pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large H_2 isotopes pumping speed</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>Large H_2 isotopes capacity</td>
<td>😞</td>
<td>NAN</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>Magnetic field and radiation compatible</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
<td>😞</td>
</tr>
<tr>
<td>Controlled release of H_2 isotopes</td>
<td>NAN</td>
<td>NAN</td>
<td>😞</td>
<td>😞</td>
</tr>
</tbody>
</table>

It depends on cryogenic temperature
Vacuum Technology Division

mak**ing innovation happen, together**

12/11/2021

CONTENTS

- Vacuum Systems Challenges in Fusion Energy
- ZAO NEG pumps characteristics in Fusion Energy
- Applications
- NEG basics
- Conclusions
Examples of NEG application in fusion research date back to the 70’s and 80’s

- 1976 – ASDEX: SORB-AC® cartridges in the ASDEX divertor: study commissioned by the Max Planck Institut für Plasmaphysik (1)
- 1983 – TFTR Princeton: St101® (Zr-Al) Wafer Modules in the plasma chamber (2)
- 1986 – JET ICRF: NEG pumps in the Antenna Vacuum Transmission Lines (3)

More recently, new interest has aroused about the use of NEG in fusion research:

- 2006 – ENEA Frascati: NEG was used to enable the detection with conventional QMS of 4He / 3He in gas mixtures rich of D2 / T (4)
- 2014 → DEMO NBI (5)
- 2018 – LHD at NIFS: installation of a large array of 42 NEG pumps in the divertor completed. Testing is underway (6)
- 2019 – ITER tested NEXTorr HV200 for the ECRH and first batch of 16 units is used in the first transmission line
- 2020 – SWISS Plasma Center tested CapaciTorr HV1600 at TCV (7)

(4) A. Frattolillo, A. De Ninno, A powerful tool to quantitatively detect tiny amounts of 4He in a deuterium rich background for fusion research, Proceedings of the 22nd IEEE/NPSS Symposium on Fusion Engineering - SOFE 07
(5) F. Siviero et al., Characterization of ZAO® sintered getter material for use in fusion applications, Fusion Eng. Des. 146 (2019) 1729-1732
(7) M. Baquero-Ruiz et al., Non-evaporable getter pump operations in the TCV tokamak, Fusion Eng. Des. 165 (2021) 112267
Evolution of NEGs: what’s changed from 70’s to today…

Compressed NEG St707 and St101 on constantan substrate in ASDEX, TFTR and JET

- St707 and St101 have shown a release of particulate after few cycles of H2 regeneration

Porous sintered ZAO disks in LHD, NBI DEMO, ITER ECRH, SPC

- To overcome the limitations of compressed powder pumps, SAES introduced in the 90s the use of sintered disks as main building block of a NEG cartridge.

- Sintering is high temperature metallurgical process (below melting point) to consolidate, by surface melting, powders into a single body.

- In normal applications the aim of the sintering process is to create an extremely dense product, close to what can be achieved by cast melting.

- In the case of a NEG material the objective is just the opposite: “to consolidate powders leaving an extremely porous and open structure with a large internal surface area which can effectively capture molecules.” Therefore the process has to be optimized to bound grains leaving large voids…
SAES in NEG & Fusion Research

- HORIZON 2020 – TFV project – Sub-project V: Vacuum Systems
 - task 1.3.6 “Development of a NEG-based pumping concept for NBI pumping (NBI)”

- SAES worked with RFX-consortium and KIT at:
 - demonstrating to be able to scale the performance of a “small” pump to a very large one working in conditions relevant for a NBI system
 - building a NEG mock-up of about 45 m3/s for D2 at 1e-2 Pa (2018)
 - Testing at KIT in the TIMO system (2019)

- Objectives
 - Validate models describing:
 - Sorbed quantity Δq [Torr·l/g]
 - Pumping speed evolution $S(\Delta q)$ [l/s]
 - NEG regeneration: residual q_0, gas quantity extracted, pressure
 - Test pump robustness and performance evolution with cycles
 - Test engineering solutions: mounting and heating, mechanical/electrical design, remote handling solutions, redundancy (ideal target: 10/20y maintenance free system!)
 - Define specific quantities for the use in NBI: pumping speed for pump dimension and weight
Target Application Requirements

- Large pumping speed for H$_2$ and its isotopes: several tens of m3/s
- Large gas load: flux up to tens of Pa m3/s, pressure up to 10$^{-2}$ Pa range
- Hydrogenation-DeHydrogenation (HDH) cycles at several Torr·l/g

Outline

- Why NEG?
- Pumping properties for H$_2$ and D$_2$
- Speed vs pressure
 - Speed vs concentration
 - Equilibrium pressure
 - HDH fatigue test
 - Regeneration
- Towards a full-scale pumping solution
 - Scaling properties from getter disk to small and large-scale pump
 - Working scenarios: matching speed, gas load, duty cycle and regeneration requirements
Why considering a NEG solution?

- High affinity for hydrogenic species
 - pumping speed per unit area
- Large capture capacity for hydrogenic species
 - less frequent regeneration cycles
 - promising system availability
- Passive pump
 - Exempt from faults during operation (e.g., power outage: NEG keeps on pumping, no H₂ release)
- Simple integration (vacuum feedthroughs)
 - also improves reliability
 - less design constraints
- RT < Operating temperature < 150°C
 - No issue with stray electrons and radiative heat exchange
 - No freezing of beam line components
- Commercially available product: modularity of NEG elements (disks)
 - Potentiality to build an extremely large tailor-made pump
ZAO-HV getter disks

- Proprietary* quaternary alloy: Zr V Ti Al

- Sintered getter: robust and extremely low particle release

- Dimensions:
 - External diameter: ~ 24.3 mm
 - Internal diameter: ~ 6.2 mm
 - Height: ~ 2 mm
 - Weight: 3.5 g

- Standard activation temperature: 450 - 550°C

- Grouped in stacks with 0.5 – 1 mm spacing

*Patented alloy: European patents 2,745,305 and 3,071,720
Pumping properties of ZAO getter disks

- H₂ pumping speed of ZAO sintered porous disks shows significant value also at higher pressure values
- 30-40% decrease is measured compared to the nominal pumping speed in the range (1e-4÷1e-1) Pa
Pumping properties of ZAO getter disks

Pumping speed vs sorbed quantity at different pressure of D$_2$

- Similar behavior is observed for D$_2$ at higher pressure values
Regeneration mechanism: equilibrium pressure of ZAO getter disks

- Little difference for H₂ and D₂: max 20%
- No hysteresis observed under repeated adsorption-desorption runs
Mechanical properties of ZAO getter disks

- Requirements related to Hydrogen embrittlement
 - “Single shot” limit: dose H_2 until the disks loose particles or cracks appear
 - “HDH” cycle limit: adsorption-desorption cycles at a given concentration

- Dose H_2 (10 Torr·l/g)
- Vibration 33 Hz – 5mm stroke
- Check for dust / cracks
- Next dose

- Stack 1: dose H_2 (15 Torr·l/g)
- Stack 1 reactivation & Stack 2 sorption
- Stack 2 reactivation & Stack 1 sorption
Mechanical properties of ZAO getter disks

- Hydrogen Embrittlement: ZAO-HV disk are very robust!

![Graph showing equilibrium pressure vs. hydrogen concentration for D2 and H2 gases at different temperatures.](image)

- No problem expected in NBI applications working in the Sieverts zone (≤10 Torr/l/g)
- HDH cycle limit: >14 Torr/l/g
- Single-shot embrittlement limit: about 100 Torr/l/g
- 1000 cycles
Scaling : thermal

- Case of the mock-up (34 cartridges) already studied by RFX

![Image of thermal analysis](image)

Activation parameters:
4,8 A, 95V
About 15,5 kW total

Courtesy of E.Sartori, Consorzio RFX
Vacuum Technology Division

CONTENT

- Vacuum Systems Challenges in Fusion Energy
- ZAO NEG pumps characteristics in Fusion Energy
- Applications
- NEG basics
- Conclusions
Large pumping speed in fusion energy

- Large NEG pump of 34,000 l/s for H\textsubscript{2} has been developed inside Eurofusion collaboration with RFX and KIT
- The pump has been developed as a pumping system of DEMO NBI
- NEG pump shown stable performances
 - After several cycles of sorption/desorption of H\textsubscript{2} and D\textsubscript{2}
 - Under different temperature (40–210\degree C range), pressure (6 – 100 mPa) and load (0 – 11 torr-l/g)
ZAO NEG pump: an extreme flexible pumping system at LHD (NIFS)

Installation region - Divertor

- 42 flangeless ZAO wafer modules have been distributed in the divertor at LHD
- The modules are exposed to H2 injection at a peak pressure in the range 1e-3 ÷ 0.1 Pa

Smart distribution inside the divertor region

Courtesy of Gen Motojima, engineering and vacuum group at NIFS
NEXTorr HV 200 @ ECRH ITER transfer line

- NEXTorr HV 200 can keep pressure at 2e-8 mbar in 1.7 m³ volume chamber
- Leak rate <1e-9 mbar l/sec

Courtesy of Shaun Hughes and David Laugier, ITER organization, Cadarache
Vacuum Systems Challenges in Fusion Energy
ZAO NEG pumps characteristics in Fusion Energy
Applications
NEG basics
Conclusions
Non Evaporable Getters: Basics

- NEG are **reactive metals or alloys** which capture active gases, such as H$_2$O, CO, CO$_2$, O$_2$ and N$_2$ by a **chemical reaction** on their active surface.

- The reaction generates carbides, oxides and nitrides on the getter surface: gases are **permanently removed** from the vacuum system.

- **Hydrogen** does not react to form a chemical compound but dissolves in the bulk of the getter forming a **solid solution**.

- A getter **does not pump noble gases** as they do not chemically react.
Operating a NEG is simple:

- **Step 1:** heating under vacuum: **ACTIVATION AND REGENERATION**
 - Typically starts at 10^{-6} Torr
 - **Modest activation temperature:** 40 – 400 W, roughly 500-600 °C
 - **ACTIVATION:** 60 minutes standard
 - **REGENERATION:** 5-10 hours depending on experimental conditions

- **Step 2:** Enjoy!
 - After the activation or regeneration, the pump absorbs gases at room temperature **without requiring power** (surface absorption)

- When the surface capacity is reached (or after a venting), the pump must be reactivated. Repeatable many times (at least 100)
An example: standard activation

Standard activation of a NEG pump
Regeneration will last longer and will present broader first peak

Pump down & bake out
NEG Activation 1 hour
Cool down to RT

Pressure (mbar)

Time

Pump down & bake out
NEG Activation 1 hour
Cool down to RT

NEG @ RT
NEG 450-500 °C

An example: standard activation
NEG pumps are the most suited candidate in all those systems where the following requirements need to be fulfilled:

- Clean Ultra High Vacuum (UHV) and more “tough” high vacuum conditions
- High pumping speed for H_2 and all active gases (H_2O, O_2, CO_2/CO, N_2)
- Reduced footprint and light weight
- Passive and constant pumping speed
- Absence of vibrations
- Absence of maintenance
- Reduced or absent power consumption
- Reduced or absent magnetic interference

NEGs are therefore the most suited choice for a wide variety of UHV and high vacuum systems, from research field to industry applications.
Conclusions

- Thermonuclear reactors are promising facilities for clean and powerful energy source
- Reactors and their subsystems need large pumping speed and capacity for H\textsubscript{2} isotopes
- ZAO NEG alloy represents a sustainable pumping solutions with stable and constant pumping performances for H\textsubscript{2} isotopes after many cycles of regeneration
- ZAO NEG pumps represents a flexible solution which can be distributed directly inside the fusion energy reactor and its subsystems
New trends and challenges in vacuum technology

Cold atomic trap
- Courtesy of Dr. Tristan Valenzuela, Univ. of Birmingham for the EU FET-Open project iSense (grant no. 250072)
- Compactness and light
- Portability of experiment
- High speed/dimension ratio
- Large vacuum device requires
- High capacity for all gases
- Optimized distribution along the large vessels

Synchrotrons
- Mirror & Monochromator
- Flexible distribution

MBE - Semicon
- Wide working pressure
- More the systems are complex, wider is the operating pressure range
- In complex devices no back out, therefore wide variability vs time

Interferometer
- High pumping speed

Fusion Energy
- Future Circular Collider (FCC)
 - Circumference: 500-1000 km
 - Energy: 100 TeV (pp at 350 GeV center)
- Large Hadron Collider (LHC)
 - Large Electron-Positron Collider (LEP)
 - Circumference: 27 km
 - Energy: 14 TeV (pp at 200 GeV center)
- Teravtron
 - Circumference: 0.2 km
 - Energy: 2 TeV (eγ)
Non Evaporable Getter addressing new trends in vacuum technology

- 100 l/s in 2.2 kg
- Compact distribution @ SWISSFEL
- Compactness and light
- Flexible distribution
- 4000 l/s in interferometer
- High pumping speed
- Wide working pressure
- 34,000 l/s in 100x70 cm
- CF35 flange 500 l/s
- Higher OLED luminescence
- 25 cm
Thank you for your attention

Enrico Maccallini
enrico_maccallini@saes-group.com