

ZAO NEG Technology in Fusion Energy Applications

Vacuum Technology Division

Content

- Vacuum Systems Challenges in Fusion Energy
- ZAO NEG pumps characteristics in Fusion Energy
- Applications
- NEG basics
- Conclusions
- New vacuum trends

Content

making innovation happen, together

Vacuum Systems Challenges in Fusion Energy

- ZAO NEG pumps characteristics in Fusion Energy
- Applications
- NEG basics
- Conclusions
- New vacuum trends

Thermonuclear Fusion: a new promising and powerful energy source

Fusion Energy is based on the thermonuclear reaction of **hydrogen isotopes** fuels in a plasma

In stars, the huge gravity allows **confining** atoms and to produce energy by fusion at about 15 million °C

The **thermonuclear reactors** developments started in 50's-70's to reproduce the energy production mechanisms inside stars

The most promising fusion reaction on earth involves D and T to produce He and highly energetic neutrons

making innovation happen, together

To get the confinement and plasma process of H_2 isotopes in thermonuclear reactors, 3 main aspects must be fulfilled

Utilize **refilling** sources of H₂ **isotopes and pump exhaust** to keep stable plasma

Make the reaction in vacuum (backgound pressure at least 1e-5 Pa)

Use of powerful magnets to confine the plasma

Vacuum Systems Challenges in Fusion Energy

The vacuum characteristics of fusion energy process in stars vs thermonuclear reactors are

- In thermonuclear reactors vacuum conditions must be generated from scratch
- H₂ isotopes are confined by gravity inside stars, in thermonuclear reactors H₂ isotopes repulse each other and escape from the plasma
- Escaped isotopes can destabilize plasma process and therefore production of energy
- The pressure has to be kept constant against a certain re-fuelling rate of H₂ isotopes
- In the vacuum systems of thermonuclear reactors, 2 different aspects must be addressed
 - Base pressure in high vacuum level, e.g. at least 1e-6 Pa
 - Large pumping speed for H₂ isotopes to either keep stable fluxes or absorb escaped H₂ isotopes
- The thermonuclear reactors consist of
 - **main vessel** where plasma process occurs and the produced energy is absorbed & distributed
 - several subsystems for plasma heating and confinement, and keep adequate vacuum conditions
- The background gas are mainly H₂, water and CO/CO₂
- Hydrocarbons and air are excluded from the application

Vacuum Systems Challenges in Fusion Energy: subsystems

Divertor

 The divertor collects the waste of materials used in the plasma process such as H₂ isotopes

NBI

- Neutral Beam of H₂ and D₂ is injected inside the thermonuclear reactor to «heat» the plasma process
- During the experiment, gas is scattered and must be pumped

ECRH/ICRH

- The ECRH/ICRH works in the range of 1e-6 Pa
- Between reactor and ECRH diamond windows can be used to prevent back streaming of H₂ isotopes
- Sometimes, windows are not used and high flux of H₂ can back stream

H₂ isotopes must be selectively pumped and released

H₂ isotopes are produced and mixed to ⁴He

Storage and release of hydrogen isotopes

pumped

Vacuum Systems Challenges in Fusion Energy: vacuum requirements

making innovation happen, together

	NBI	Divertor	ECRH/ICRH	Diagnostic	H ₂ storage and release
Vacuum background (Pa) - main gas	1e-6 - H ₂	1e-6 - H ₂	1e-6 - H ₂ , H ₂ O	1e-7 - H ₂ , H ₂ O	1e-7 - H ₂ , H ₂ O
H ₂ isotopes level during operation (Pa)	1e-2	1e-3÷1	1e-5	1e-2	1e-2***
Required H ₂ isotopes pumping speed (I/s)	10.000÷6M*	10.000÷1M*	Distributed pumping	1.000	NAN****
Required H ₂ isotopes capacity (Pa·I)**	10M÷1.000M	1M÷10.000M	2k	10k	NAN****

* The pumping speed depends on NBI and Divertor volumes and Pumps Conductance

- ******The required capacity is calculated for 5 days of operation
- ***The pressure indicates the H_2 isotopes value at ppb level in He4 gas stream

****In the storage and release of H₂ isotopes, NEG "bed" must be considered which can enhance the probability to capture H₂ isotopes in a large gas stream flux

Takeaways

- In thermonuclear reactors subsystems, the required pumping speed and capacity of H₂ isotopes are very significant
- The required pumping speed and capacity must be considered as distributed inside the vacuum systems
- Given the large amount involved, the pumping system must be able to store and release H₂ isotopes by controlled process

Vacuum Systems Challenges in Fusion Energy: available pumping technologies TMP NEG pump (CapaciTorr Z400) Cryo pump Ion pump **Cryo pump** Ion pump 500 **TMP 300** CapaciTorr Z400 20 Ø x 53 25 x 21 13 x 3.5 Dim. (cm) 52 x 45 x 30 Weight (kg) 0.2 kg 12 120 20 Pumping speed for H₂ (I/s) 300 500 500 500 saes **Power consumption (W)** 2200 0.035-0.35 35 0 group

making innovation happen, together

Pumping technologies must be compared in terms of performances vs (dimension, weight, pumping speed, Power consumption)

Cryo pump saes group

TMP NEG pump (CapaciTorr Z400) Ion pump Thermonuclear reactor requirements TMP **NEG pump** lon pump **Cryo pump** Large H₂ isotopes pumping speed 8 \bigcirc **≌ ⊙*** \odot Large H₂ isotopes capacity NAN 8 \bigcirc \odot Magnetic field and radiation compatible 8 8 \odot \odot **Controlled release of H₂ isotopes** NAN NAN 8 \odot

*It depends on cryogenic temperature

• **NEG pumps** are **compliant** with main **thermonuclear reactors requirements** in fusion energy applications

Vacuum Systems Challenges in Fusion Energy: available pumping technologies

12/11/2021

CONTENT

making innovation happen, together

Vacuum Systems Challenges in Fusion Energy

- ZAO NEG pumps characteristics in Fusion Energy
- Applications
- NEG basics
- Conclusions

- Examples of NEG application in fusion research date back to the 70's and 80's
 - 1976 ASDEX : SORB-AC[®] cartridges in the ASDEX divertor: study commissioned by the Max Planck Institut für Plasmaphysik (1)
 - 1983 TFTR Princeton : St101[®] (Zr-Al) Wafer Modules in the plasma chamber (2)
 - 1986 JET ICRF : NEG pumps in the Antenna Vacuum Transmission Lines (3)
- More recently, new interest has aroused about the use of NEG in fusion research:
 - 2006 ENEA Frascati : NEG was used to enable the detection with conventional QMS of 4He / 3He in gas mixtures rich of D2 / T (4)
 - 2014 → DEMO NBI (5)
 - 2018 LHD at NIFS: installation of a large array of 42 NEG pumps in the divertor completed. Testing is underway (6)
 - 2019 ITER tested NEXTorr HV200 for the ECRH and first batch of 16 units is used in the first transmission line
 - 2020 SWISS Plasma Center tested CapaciTorr HV1600 at TCV (7)

(1) M.Borghi and B.Ferrario, Use of non-evaporable getter pumps in experimental fusion reactors, J. Vac. Sci. Technol. 14(1) (1977) 570-574.
(2) J.L. Cecchi et al., Initial limiter and getter operation in TFTR, Journal of Nuclear Materials, 128 & 129 (1984) 1-9.

(3) C. I. Walker, A.S. Kaye, R.A. Horn, F. Mazza, Non-Evaporable Getter Pumping For JET ICRF Antennae, Proceed. 14th Symposium on Fusion Technology, Avignon (France), September 1986 PP. 815-820

(4) A. Frattolillo, A. De Ninno, A powerful tool to quantitatively detect tiny amounts of 4He in a deuterium rich background for fusion research, Proceedings of the 22nd IEEE/NPSS Symposium on Fusion Engineering - SOFE 07

(5) F. Siviero et al., Characterization of ZAO® sintered getter material for use in fusion applications, Fusion Eng. Des. 146 (2019) 1729-1732 (6) G. Motojima et al., New installation of in-vessel Non Evaporable Getter (NEG) pumps for the divertor pump in the LHD, Fusion Eng. Des. 143 (2019) 226-232

(7) M. Baquero-Ruiz et al., Non-evaporable getter pump operations in the TCV tokamak, Fusion Eng. Des. 165 (2021) 112267

St707 and St101 have shown a release of particulate after few cycles of H2 regeneration

Porous sintered ZAO disks in LHD, NBI DEMO, ITER ECRH, SPC

To overcome the limitations of compressed powder pumps, SAES introduced in the **90s**' the use of sintered disks as main building block of a NEG cartridge.

STAGES OF SINTERING

Evolution of NEGs: what's changed from 70's to today...

- Sintering is high temperature metallurgical process (below melting point) to consolidate, by surface melting, powders into a single body.
- In normal applications the aim of the sintering process is to create an extremely dense product, close to what can be achieved by cast melting.

In the case of a NEG material the objective is just the opposite: "to consolidate powders leaving an extremely porous and open structure with a large internal surface area which can effectively capture molecules." Therefore the process has to be optimized to bound grains leaving large voids...

SAES in NEG & Fusion Research

- HORIZON 2020 TFV project Sub-project V: Vacuum Systems
 - task 1.3.6 "Development of a NEG-based pumping concept for NBI pumping (NBI)"
- SAES worked with RFX-consortium and KIT at :
 - demonstrating to be able to scale the performance of a "small" pump to a very large one working in conditions relevant for a NBI system
 - building a NEG mock-up of about 45 m3/s for D2 at 1e-2 Pa (2018)
 - Testing at KIT in the TIMO system (2019)
- Objectives
 - Validate models describing:
 - Sorbed quantity Δq [Torr·l/g]
 - Pumping speed evolution S(Δq) [l/s]
 - NEG regeneration: residual q0, gas quantity extracted, pressure
 - Test pump robustness and performance evolution with cycles
 - Test engineering solutions: mounting and heating, mechanical/electrical design, remote handling solutions, redundancy (ideal target: 10/20y maintenance free system !)
 - Define specific quantities for the use in NBI: pumping speed for pump dimension and weight

Saes group

making innovation happen, together

SAES in NEG & Fusion Research

Target Application Requirements

- Large pumping speed for H₂ and its isotopes: several tens of m3/s
- Large gas load : flux up to tens of Pa m3/s, pressure up to 10-2 Pa range
- Hydrogenation-DeHydrogenation (HDH) cycles at several Torr·I/g

Outline

- Why NEG ?
- Pumping properties for H₂ and D₂
- Speed vs pressure
 - Speed vs concentration
 - Equilibrium pressure
 - HDH fatigue test
 - Regeneration
- Towards a full-scale pumping solution
 - Scaling properties from getter disk to small and large-scale pump
 - Working scenarios: matching speed, gas load, duty cycle and regeneration requirements

Why considering a NEG solution?

- High affinity for hydrogenic species
- pumping speed per unit area
- Large capture capacity for hydrogenic species
 - less frequent regeneration cycles
 - promising system availability

Passive pump

- Exempt from faults during operation (e.g power outage: NEG keeps on pumping, no H₂ release)
- Simple integration (vacuum feedthroughs)
 - also improves reliability
 - less design constraints
- RT < Operating temperature < 150°C
- No issue with stray electrons and radiative heat exchange
- No freezing of beam line components
- Commercially available product : modularity of NEG elements (disks)
 - Potentiality to build an extremely large tailor-made pump

ZAO-HV getter disks

- Proprietary* quaternary alloy : Zr V Ti Al
- Sintered getter: robust and extremely low particle release
- Dimensions:
 - External diameter : ~ 24,3 mm
 - Internal diameter : ~ 6,2 mm
 - Height : ~ 2 mm
 - Weight : 3,5 g
- Standard activation temperature : 450 550°C
- Grouped in stacks with 0,5 1 mm spacing

* Patented alloy: European patents 2,745,305 and 3,071,720

Pumping properties of ZAO getter disks

Pumping speed vs sorbed quantity at different pressure of H_2

H₂ pumping speed of ZAO sintered porous disks shows significant value also at higher pressure values

• 30-40% decrease is measured compared to the nominal pumping speed in the range (1e-4÷1e-1) Pa

Pumping Speed (a.u.)

Pumping properties of ZAO getter disks

Pumping speed vs sorbed quantity at different pressure of D_2

Pumping Speed (a.u.)

Regeneration mechanism: equilibrium pressure of ZAO getter disks

making innovation happen, together

Hydrogen concentration (Torr.l/g)

- Little difference for H₂ and D₂: max 20%
- No hysteresis observed under repeated adsorption-desorption runs

12/11/2021

Mechanical properties of ZAO getter disks

- Requirements related to Hydrogen embrittlement
 - "Single shot" limit: dose H₂ until the disks loose particles or cracks appear
 - "HDH" cycle limit: adsorption-desorption cycles at a given concentration

making innovation happen, together

5 disk stack

Dose H_2 (10 Torr·l/g)

- Vibration 33 Hz 5mm stroke
- Check for dust / cracks .
- Next dose .

•

- **Stack 1** : dose H_2 (15 Torr·l/g) ٠
- Stack 1 reactivation & Stack 2 sorption ٠
- Stack 2 reactivation & Stack 1 sorption ٠

12/11/2021

Mechanical properties of ZAO getter disks

Hydrogen Embrittlement: ZAO-HV disk are very robust!

making innovation happen, together

Hydrogen concentration (Torr.l/g)

Scaling : thermal

• Case of the mock-up (34 cartridges) already studied by RFX

Activation parameters: 4,8 A, 95V About 15,5 kW total

12/11/2021

saes

group

CONTENT

- Vacuum Systems Challenges in Fusion Energy
- ZAO NEG pumps characteristics in Fusion Energy
- Applications
- NEG basics
- Conclusions

Large pumping speed in fusion energy

- Large NEG pump of 34.000 l/s for H₂ has been developed inside Eurofusion collaboration with RFX and KIT
- The pump has been developed ad pumping system of DEMO NBI
- NEG pump shown stable performonaces
 - After several cycles of sorption/desorption of H₂ and D₂
 - Under different temperature (40-210°C range), pressure (6 100 mPa) and load (0 11 torr·l/g)

The cartridges of the mockup were manufactured
Tests at SAES R&D labs ongoing

- 6 stacks; 270 NEG disks, 920 g
- Heater : Ta wire and alumina support
 - Redundant solution under development

ZAO NEG pump: an extreme flexible pumping system at LHD (NIFS)

Smart distribution inside the divertor region

SNEG wafer modules support ののです。 ののでです。 ののです。 ののでで ののでです。 ののでで ののでです。

Installation region - Divertor

- 42 flangeless ZAO wafer modules have been distributed in the divertor at LHD
- The modules are exposed to H2 injection at a peak pressure in the range 1e-3 ÷ 0.1 Pa

Courtesy of Gen Motojima, engineering and vacuum group at NIFS

NEXTorr HV 200 @ ECRH ITER transfer line

- NEXTorr HV 200 can keep pressure at 2e-8 mbar in 1.7 m³ volume chamber
- Leak rate <1e-9 mbar l/sec</p>

Courtesy of Shaun Hughes and David Laugier, ITER organization, Cadarache

Content

- Vacuum Systems Challenges in Fusion Energy
 - ZAO NEG pumps characteristics in Fusion Energy
 - Applications
- NEG basics
- Conclusions

Non Evaporable Getters: Basics

- NEGs are reactive metals or alloys which capture active gases, such as H₂O, CO, CO₂, O₂ and N₂ by a <u>chemical reaction</u> on their active surface
- The reaction generates carbides, oxides and nitrides on the getter surface: gases are <u>permanently removed</u> from the vacuum system
- <u>Hydrogen</u> does not react to form a chemical compound but dissolves in the bulk of the getter forming a <u>solid solution</u>
- A getter <u>does not pump noble gases</u> as they do not chemically react

NEG operation

Operating a NEG is simple:

- Step 1: heating under vacuum: ACTIVATION AND REGENERATION
 - ✓ Typically starts at 10⁻⁶ Torr
 - ✓ Modest activation temperature: 40 400 W, roughly 500-600 °C
 - ✓ ACTIVATION: 60 minutes standard
 - ✓ REGENERATION: 5-10 hours depending on experimental conditions
- Step 2: Enjoy!
 - ✓ After the activation or regeneration, the pump absorbs gases at room temperature without requiring power (surface absorption)
- When the surface capacity is reached (or after a venting), the pump must be reactivated. Repeatable many times (at least 100)

12/11/2021

Standard activation of a NEG pump Regeneration will last longer and will present broader first peak $Pump \ down \ \& \ NEG \ Activation \ Cool \ down \ to \ RT \ on \ T$

making innovation happen, together

saes

group

Saes group

making innovation happen, together

Non Evaporable Getter Pumps: When

NEG pumps are the most suited candidate in all those systems where the following requirements need to be fulfilled:

- Clean Ultra High Vacuum (UHV) and more "tough" high vacuum conditions
- High pumping speed for H₂ and all active gases (H₂O, O₂, CO₂/CO, N₂)
- Reduced footprint and light weight
- Passive and constant pumping speed
- Absence of vibrations
- Absence of maintenance
- Reduced or absent power consumption
- Reduced or absent magnetic interference

NEGs are therefore the most suited choice for a wide variety of UHV and high vacuum systems, from research field to industry applications

Conclusions

- Thermonuclear reactors are promising facilities for clean and powereful energy source
- Reactors and their subsystems need large pumping speed and capacity for H₂ isotopes
- ZAO NEG alloy represents a sutainable pumping solutions with stable and constant pumping performances for H2 isotopes after many cycles of regeneration
- ZAO NEG pumps represents a flexible solution which can be distributed directly inside the fusion energy reactor and its subsystems

12/11/2021

12/11/2021

Thank you for your attention

www.saesgroup.com

Saes

Enrico Maccallini enrico_maccallini@saes-group.com

